Advanced Power Electronics Corp.

PWM Control 5A Step-Down Converter

* GENERAL DESCRIPTION

APE1809 consists of step-down switching regulator with PWM control. These devise include a reference voltage source, oscillation circuit, error amplifier, internal PMOS and etc.

APE1809 provides low-ripple power, high efficiency, and excellent transient characteristics. The PWM control circuit is able to very the duty ratio linearly form 0 up to 100%. This converter also contains an error amplifier circuit as well as a soft-start circuit that prevents overshoot at startup. An enable function, an over current protect function and short circuit protect function are built inside, and when OCP or SCP happens, the operation frequency will be reduced. Also, an internal compensation block is built in to minimum external component count.

With the addition of an internal P-channel Power MOS, a coil, capacitors, and a diode connected externally, these ICs can function as step-down switching regulators. They serve as ideal power supply units for portable devices when coupled with the SOP-8L package, providing such outstanding features as low current consumption. Since this converter can accommodate an input voltage up to 23 V , it is also suitable for the operation via an AC adapter.

* FEATURES

- Input voltage : 4.0 V to 23 V
- Output voltage : 0.8 V to Vcc
- Duty ratio: 0\% to 100\% PWM control
- Oscillation frequency : 330KHz typ.
- Soft-start(SS), Current Limit(CL), Enable function.
- Thermal Shutdown function.
- Short Circuit Protect (SCP).
- Built-in internal SW P-channel MOS.
- Low ESR output capacitor (Multi-layer chip capacitor (MLCC)) application.
- PDIP-8L Pb-Free package.

Advanced Power
Electronics Corp.

APE1809

* Block Diagram

* PIN ASSIGNMET

The package of APE1809 is PDIP-8L; the pin assignment is given by:

			Name	Description
	(Top View)			Power-off pin H : normal operation(Step-down)
EN 1	\bigcirc	8 FB	EN	L : Step-down operation stopped (All circuits deactivated)
COMP 2		7 Vss	Comp	Compensation pin
OCSET	APE1809	6 SW	OCSET	Add an external resistor to set max switch output current.
			V_{cc}	IC power supply pin
Vcc 4		5 sw	SW	Switch pin. Connect external inductor/diode here.
	PDIP-8L		Vss	GND pin
			FB	Feedback pin

* ORDER/MARKING INFORMATION

Order Information	Top Marking
	1809 D Part number YWWSSS ID code: internal WW: 01~52 Year: $6=2006$

Advanced Power Electronics Corp.

* Absolute Maximum Ratings (at $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit
VCC Pin Voltage	V_{CC}	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{S S}+25$	V
Feedback Pin Voltage	V_{FB}	$\mathrm{V}_{S S}-0.3$ to V_{CC}	V
ON/OFF Pin Voltage	V_{EN}	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Switch Pin Voltage	V_{SW}	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Power Dissipation	PD	Internally limited	mW
Storage Temperature Range	$\mathrm{T}_{\text {ST }}$	-40 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{OP}	-20 to +125	${ }^{\circ} \mathrm{C}$
Operating Supply Voltage	$\mathrm{V}_{\text {OP }}$	+3.6 to +23	V
Thermal Resistance from Junction to case	θ_{JC}	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance from Junction to ambient	θ_{JA}	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note : θ JA is measured with the PCB copper area(need connect to SW pins) of approximately 1 in2(Multi-layer).
Electrical Characteristics (VIN $=12 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Characteristics	Symbol	Conditions		Min	Typ	Max	Units
Feedback Voltage	$V_{\text {FB }}$	lout $=0.2 \mathrm{~A}$		0.784	0.8	0.816	V
Quiescent Current	I CCO	$\mathrm{V}_{\mathrm{FB}}=1.2 \mathrm{~V}$ force driver off			3	5	mA
Feedback Bias Current	Ifb	lout $=0.2 \mathrm{~A}$		-	0.1	0.5	uA
Shutdown Supply Current	ISD	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$		-	2	10	uA
OCSET pin bias current	locset			95	110	125	uA
Switch Current	Isw			6.0	-	-	A
Line Regulation	$\triangle V_{\text {out }} / V_{\text {Out }}$	$\mathrm{V}_{\text {cc }}=5 \mathrm{~V} \sim 23 \mathrm{~V}$, lout $=0.2 \mathrm{~A}$		-	0.6	1.2	\%
Load Regulation	$\triangle V_{\text {out }} / V_{\text {Out }}$	lout $=0.2$ to 5A		-	0.3	0.5	\%
Oscillation Frequency	Fosc	SW pin		260	330	400	KHz
EN Pin Logic input	$\mathrm{V}_{\text {SH }}$	High (regulator ON)		2.0	-	-	
threshold voltage	$V_{\text {SL }}$	Low (regulator OFF)		-	-	0.8	
EN Pin Input Current	ISH	$\mathrm{V}_{\mathrm{EN}}=2.5 \mathrm{~V}$ (ON)		-	20	-	UA
	1 ls	$\mathrm{V}_{\text {EN }}=0.3 \mathrm{~V}$ (OFF)		-	-10	-	uA
Soft-Start Time	Tss			0.3	4	8	ms
Internal MOSFET R ${ }_{\text {dson }}$	$\mathrm{R}_{\text {DSon }}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=0 \mathrm{~V}$		-	80	140	mR
		$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$		-	50	90	
Efficiency	EFFI	$V_{\text {Out }}=5 \mathrm{~V}$	lout $=3 \mathrm{~A}$	-	91	-	\%
			lout $=4 \mathrm{~A}$	-	90	-	
Thermal shutdown Temp	TSD				125		${ }^{\circ} \mathrm{C}$

Advanced Power Electronics Corp.

* Application Circuit

1. MLCC

Compensation Capacitor Selection(MLCC)					
VIN	$\mathrm{V}_{\text {OUT }}$	R 3	C 7	C 1	C 9
12 V	$2.5 / 3.3 / 5.0 \mathrm{~V}$	15 K	1800 pF	1 nF	Open
5 V	$3.3 / 2.5 / 1.8 \mathrm{~V}$	15 K	1800 pF	1 nF	Open

2. EL CAP

VFB $=0.8 \mathrm{~V}$; R2 suggest $0.8 \mathrm{~K} \sim 6.0 \mathrm{~K}$

Compensation Capacitor Selection(AL CAP)					
VIN	$V_{\text {OUT }}$	R 3	C 7	C 1	C 9
$5-16 \mathrm{~V}$	$5 / 3.3 / 2.5 / 1.8 \mathrm{~V}$	3.9 K	10 nF	1 nF	Open

L1 recommend value ($\left.\mathbf{V}_{\mathbf{I N}}=\mathbf{1 2 V} \mathbf{V}\right)$				
$\mathbf{V}_{\text {OUT }}$	1.8 V	2.5 V	3.3 V	5 V
I Out $^{\mathbf{O}} \mathbf{3 A}$	12 uH	15 uH	18 uH	22 uH
$\mathbf{I}_{\text {OUT }}=5 \mathrm{~A}$	8 uH	10 uH	12 uH	15 uH

Advanced Power Electronics Corp.

* Function Descriptions

PWM Control

The APE1809 consists of DC/DC converters that employ a pulse-width modulation (PWM) system. In converters of the APE1809, the pulse width varies in a range from 0 to 100%, according to the load current. The ripple voltage produced by the switching can easily be removed through a filter because the switching frequency remains constant. Therefore, these converters provide a low-ripple power over broad ranges of input voltage and load current.

RDS(ON) Current Limiting

The current limit threshold is setting by the external resistor (R5) connecting from V_{Cc} supply to OCSET pin. The internal 110 uA sink current crossing the resistor sets the voltage at pin of OCSET. When the PWM voltage is less than the voltage at OCSET, an over-current condition is triggered. Please refer to the formula for setting the current limit value:

$$
\operatorname{Isw}_{(\mathrm{MAX})}=\frac{\mathrm{l}_{\mathrm{OCSET}} \times \mathrm{R} 3+0.11}{R_{\mathrm{DS}(\mathrm{ON})}}
$$

(Normally, The Isw(MAX) setting more than lout 1.5~2.5A).
Example:

$$
\mathrm{I}_{\mathrm{sw}}=(110 \mathrm{uA} * 2.0 \mathrm{k}+0.11) / 50 \mathrm{~m} \Omega=6.6 \mathrm{~A}
$$

Setting the Output Voltage

Application circuit item shows the basic application circuit with APE1809 adjustable output version. The external resistor sets the output voltage according to the following equation:

$$
V_{\text {oUT }}=0.8 V \times\left(1+\frac{R 1}{R 2}\right)
$$

Table 1 Resistor select for output voltage setting

$V_{\text {out }}$	$R 2$	$R 1$
	1.3 K	6.8 K
	5.6 K	30 K
3.3 V	1.5 K	4.7 K
	5.6 K	18 K
2.5 V	2.2 K	4.7 K
	5.6 K	12 K
1.8 V	2 K	2.5 K

Advanced Power Electronics Corp.

PCB Layout Guide

If you need low Tc \& Tj or large PD(Power Dissipation), The dual SW pins(5\&6) on the PDIP-8L package are internally connected to die pad, The PCB layout should allow for maximum possible copper area at the SW pins.

1. Connect C 3 to V_{Cc} pin as closely as possible to get good power filter effect.
2. Connect $R 5$ to V cc pin as closely as possible.
3. Connect ground side of the C2 \& D1 as closely as possible.

Advanced Power Electronics Corp.

* Typical Characteristics

VFB VS VIN

FOSC VS VIN

VFB VS TEMPERATURE

ICCQ VS VIN

FOSC VS TEMPERATURE

ICCQ VS TEMPERATURE

Advanced Power Electronics Corp.

* Typical Characteristics

Output Ripple

$$
\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=5 \mathrm{~A}\right)
$$

Load Transient Response

$$
\left(V_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0.2 \sim 5 \mathrm{~A}\right)
$$

Efficiency
$\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}\right)$

Power on test wave
$\left(V_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=5 \mathrm{~A}\right)$

EN on test wave
$\left(V_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=5 \mathrm{~A}\right)$

* Typical Characteristics (MLCC)

Output Ripple
($\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {out }}=3 \mathrm{~A}$)

Load Transient Response
($\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {out }}=0.1 \sim 3 \mathrm{~A}$)

$$
\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {out }}=5 \mathrm{~V}\right)
$$

Power on test wave

$\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=3 \mathrm{~A}\right)$

EN on test wave
$\left(\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=3 \mathrm{~A}\right)$

Efficiency

$$
\left(\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}\right)
$$

ADVANCED POWER ELECTRONICS CORP.

Package Outline : PDIP-8

Part Marking Information \& Packing : PDIP-8

